156 research outputs found

    An Efficient Framework for Improving Microgrid Resilience against Islanding with Battery Swapping Stations

    Get PDF
    In this paper, an efficient bi-level framework is proposed to enhance the resilience of microgrids (MGs) against islanding due to low probability-high impact events by incorporating battery swapping stations (BSSs). In the emergency condition, MG solves the upper-level of the proposed model to report the desired energy transaction including surplus energy and unsupplied loads during the islanding period to the BSSs coordinator. The lower-level problem will be solved with an iterative algorithm by BSSs coordinator to report different plans of energy transactions and their prices to the MG during the emergency period. The price of each energy transaction plan is determined based on a bonus mechanism. Finally, MG will choose the best plan of energy trading considering a new proposed perspective of resilience improvement. Furthermore, a new formulation for BSS operation with fewer variables in comparison to the previous works is proposed in this paper. Simulations are carried out on an MG with two BSSs to verify the proposed model

    Operation Planning of Standalone Maritime Power Systems Using Particle Swarm Optimization

    Get PDF

    Variable flow controls of closed system pumps for energy savings in maritime power systems

    Get PDF

    Coordinated Control of a Hybrid-Electric-Ferry Shipboard Microgrid

    Get PDF

    Thermoelectric Generators as an Alternative Energy Source in Shipboard Microgrids

    Get PDF
    In recent years, the usage potential of alternative energy sources has been gaining importance to increase the efficiency of ships within the scope of the obligations brought by international maritime regulations. The possibility of using alternative energy sources such as solar energy, wind energy, fuel cells, and waste heat recovery technologies on ships has been evaluated in the literature. Today, ships also have waste heat recovery systems as standard equipment for this purpose, and this method is suitable for thermoelectric generators that generate electricity from temperature differences on shipboards. This article aims to review the thermal technologies for the power generation of shipboards. By conducting a case study, an energy efficiency increase was obtained when functional areas were selected on a practical ship, and the effect of this efficiency increase on emissions was examined. As a result of the research, it was discovered that thermoelectric generators increased onboard energy efficiency and have significant potential for sustainability in the maritime sector
    corecore